

Subsurface Exploration for I-40 Reconstruction in the Pigeon River Gorge Post Hurricane Helene

Chris Ramsey, PE and Jason Holland, PG

STGEC 2025

September 16, 2025

Build Better. Together.

PRESENTATION OUTLINE

- History of I-40 through Pigeon River Gorge
- Damage from Hurricane Helene
- Geotechnical Exploration
- Data, Data, Data!

History of I-40 through Pigeon River Gorge

History of I-40 through Pigeon River Gorge

Overall Project Team – CMGC Procurement

Parallel Emergency Stabilization Efforts

Project Goals

Per FHWA via NCDOT

- Resilient, Redundant, Reliable
- I-40 Corridor from MM 0.0 to MM 5.0 has a history of closure/repairs recurring every ~10 years
- Provide a system that will be resilient in storm events generally withstand a storm event and not have extended road closures.

From FIIIMA IIIF 22 000 2022.

• From FHWA-HIF-23-008, 2023:		
Resilience	With respect to a project, "resilience" means a project with)
	the ability to anticipate, prepare for, and/or adapt to	
	changing conditions and/or withstand, respond to, and/or	22 11 5 6 8
	recover rapidly from disruptions, including the ability: (A)	23 U.S.C. § 101(a)(24) ⁴
	to resist hazards or withstand impacts from weather events	(See also definition
	and natural disasters, or reduce the magnitude or duration	in TEACR Synthesis
	of impacts of a disruptive weather event or natural disaster	•
	on a project; and (B) to have the absorptive capacity,	Report)
	adaptive capacity, and recoverability to decrease project	
	vulnerability to weather events or other natural disasters.	

Excerpt from: Table 2-1, "Geohazards, Extreme Weather Events, and Climate Change Resilience Manual", B. Zelenko et al, (2023)

GEOTECHNICAL INVESTIGATIONS

- What has already been used?
 - Horizontal drains
 - Mass Rip Rap Embankment
 - Soldier Pile Walls
- What type and length of structure is anticipated?
 - Tunnel?
 - Walls & Viaducts?
 - Reinforced Buttress?
 - Continuous Walls?
- Determine investigation methods

Previous Repair Methods used at I-40 & Pigeon River

GEOTECHNICAL INVESTIGATION

- 5 miles of stabilization
- Find depth to bedrock
- Overburden is very variable silts & sands up to 20 foot boulders
 - Observation of temp. soil nails used for stabilization
 - Multichannel Analysis of Subsurface Waves (MASW) Geophysical investigation
 - Air track probes ~200 feet
 - Traditional rock coring ~500 feet
 - Include televiewer of rock cores

GEOTECHNICAL INVESTIGATION

- Over 600 investigation data points, split into 3
 Phases
 - Phase I: WB Lanes while no live traffic
 - Phase II: EB Lanes
 - Phase III: At river level from causeway
- Over 15 miles of MASW
- Lab sample data (UCS, Point Load, Direct Shear, etc.)

Geotechnical Investigation Soil Nail Installation

Temp. Soil Nail Drilling Observation

- Depth to rock
 - -Range from 2 to 38 feet
 - Rock not encountered in~25% of observed nails
- Penetration Rates
 - -Range from 0.1 to 4.1 minutes per foot (min/ft)

Geotechnical Investigation MASW Surveys

Geophysics

- 3 crews working multiple shifts
- ~15 miles of data collected

MASW Survey with Land Streamer

Geotechnical Investigation Geophysics – High Resolution Imagery with MASW

Geotechnical Investigation Geophysics – MASW Profiles

Geotechnical Investigation Conventional Drilling Methods

Geotechnical borings

- Probe to rock
 - Casing advancer on Geotech drill
 - -Micropile drill
- Core bedrock 30 feet
- Televiewer core length

Geotechnical Investigation Rock Core & Optical Televiewer Data Comparison

| Mail Finish August | Mail Fi

Geotechnical Investigation Air Track Methods

Air Track Probes

- Up to 3 rigs at a time
- Depth to rock
 - Range from 3 to 58 feet
 - Rock not encountered in ~7% of probes

Geotechnical Investigation Considerations

Top of Rock

- Steep sloping bedrock surface
- Variability in rock surface elevation
- Hard rock siltstone, sandstone, meta graywacke, quartzite

Rock Bedding / Fractures Planes

Dip toward the river

DATA MANAGEMENT WITH MORTAR

- Internally developed database system (MORTAR)
- Geo-referenced data
- Data mapping and integration
- Facilitates a more informed design process

Data Management with Mortar Next Generation of Project Delivery

- Centralized Data Hub
- 10 01 11

- Built-in QA/QC
- Dynamic Visualization
- Linked Content
- Integration & Portals
- Advanced Outputs

MAPPING & VISUALIZATION

- Internally developed database system (MORTAR)
- Data mapping and integration
- Facilitates a more informed design process

Mapping and Visualization Mortar Portal

>30 feet 30 feet > 20 feet 20 feet > 10 feet < 10 feet

Mapping & Visualization Mortar Progress Example

Pre-Storm Satellite Aerial Imagery

Post Storm Satellite Aerial Imagery

GEOSTRUCTURAL CONCEPTS

- TUNNEL (no-go)
- VIADUCT WITH WALL AT CENTERLINE (no-go)
- RCC BUTTRESS
- WALL AT SHOULDER WITH BACKFILL OPTIONS
- WALL AT TOE TO RE-ESTABLISH EMBANKMENT

RCC Buttress Concept

Interlocking Pipe Pile Wall Concept

LESSONS LEARNED

- Need to be adaptable to get information quickly and inform timely decisions on an emergency project
 - Ground conditions vs. design concepts
 - Air tracks vs. traditional borings
- Data management helps with large volumes of data to review/reduce

- Chris Ramsey 615-974-0797 cramsey@schnabel-eng.com
- Jason Holland
 910-512-5622 jholland@schnabel-eng.com

schnabel-eng.com